Distribution-Free Uncertainty Quantification A short introduction to Conformal Prediction

Margaux Zaffran

Useful resources on Conformal Prediction (non exhaustive)

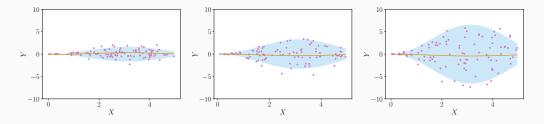
- Book reference: Vovk et al. (2005) (new edition in 2022)
- A gentle tutorial:
 - Angelopoulos and Bates (2023)
 - Videos playlist
- Another tutorial: Fontana et al. (2023)
- Ryan Tibshirani introductive lecture's notes
- GitHub repository with plenty of links: Manokhin (2022)

All material is freely accessible on this webpage, including sources.

Feel free to reuse it for presentations or teaching! If you do, please credit this version, and include a link to this webpage.

Configure as This tutorial by Margaux Zaffran (2023) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. https://conformalpredictionintro.github.io

On the importance of quantifying uncertainty



 \hookrightarrow Same predictions, yet 3 distinct underlying phenomena!

 \implies Quantifying uncertainty conveys this information.

Quantile Regression

Split Conformal Prediction (SCP)

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Reminder about quantiles

- Quantile level $\beta \in [0, 1]$
- $Q_X(\beta) := \inf\{x \in \mathbb{R}, \mathbb{P}(X \le x) \ge \beta\}$ $:= \inf\{x \in \mathbb{R}, F_X(x) \ge \beta\}$
- Empirical quantile $q_{\beta}(X_1, \ldots, X_n)$

$$:= \lceil \beta \times n \rceil$$
 smallest value of (X_1, \ldots, X_n)

Example of quantile: the median

 $\beta = 0.5$

- \hookrightarrow $q_{0.5}(X_1,\ldots,X_n)$ is the empirical median of (X_1,\ldots,X_n) ;
- \hookrightarrow $Q_X(0.5)$ represents the median of the distribution of X.

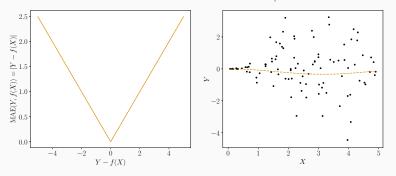
Similarly, let $q_{\beta,\inf}(X_1,\ldots,X_n) := \lfloor \beta \times n \rfloor$ smallest value of (X_1,\ldots,X_n)

Median regression

• The Bayes predictor depends on the chosen loss function.

 \hookrightarrow Bayes predictor $f^* \in \operatorname{argmin} \operatorname{Risk}_{\ell}(f)$

$$:= \underset{f}{\operatorname{argmin}} \mathbb{E}\left[\ell(Y, f(X))\right]$$
• Mean Absolute Error (MAE): $\ell(Y, Y') = |Y - Y'|$ Associated risk:
 $\operatorname{Risk}_{\ell}(f) = \mathbb{E}\left[|Y - f(X)|\right]$



$$\Rightarrow f^{\star}(X) =$$
median $[Y|X] = Q_{Y|X}(0.5)$

Generalization: Quantile regression

• Quantile level $\beta \in [0,1]$

0

-4

-2

Y - f(X)

• Pinball loss

 $\ell_{\beta}(Y,Y') = \frac{\beta}{|Y-Y'|} \mathbb{1}_{\{|Y-Y'|>0\}} + (1-\frac{\beta}{|Y-Y'|} \mathbb{1}_{\{|Y-Y'|<0\}}$ Associated risk: Risk_{ℓ_{β}} $(f) = \mathbb{E} \left[\ell_{\beta}(Y, f(X)) \right]$ Bayes predictor: $f^* \in \operatorname{argmin} \operatorname{Risk}_{\ell_{\beta}}(f)$ $\Rightarrow f^{\star}(X) = Q_{Y|X}(\beta)$ $\beta = 0.05$ 4 $\beta = 0.1$ $\beta = 0.3$ $\ell_{\beta}(Y,f(X)) \\ \overset{2}{\sim} \\ ^{2}$ $\beta = 0.5$ $\beta = 0.7$ $\beta = 0.9$ $\beta = 0.95$

ż

4

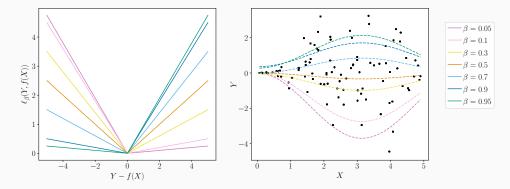
Quantile regression: foundations

Link between the pinball loss and the quantiles?
 Set q^{*} ∈ arg min E [ℓ_β(Y − q)]. Then,

$$0 = \int_{-\infty}^{+\infty} \ell'_{\beta}(y - q^{*}) df_{Y}(y)$$

= $(\beta - 1) \int_{-\infty}^{q^{*}} df_{Y}(y) + \beta \int_{q^{*}}^{+\infty} df_{Y}(y)$
 $0 = (\beta - 1) F_{Y}(q^{*}) + \beta(1 - F_{Y}(q^{*}))$
 $(1 - \beta) F_{Y}(q^{*}) = \beta(1 - F_{Y}(q^{*}))$
 $\beta = F_{Y}(q^{*})$
 $\Leftrightarrow q^{*} = F_{Y}^{-1}(\beta)$

Quantile regression: visualisation



Warning

No theoretical guarantee with a finite sample!

$$\mathbb{P}\left(Y\in\left[\hat{Q}_{Y|X}(eta/2);\hat{Q}_{Y|X}(1-eta/2)
ight]
ight)
eq1-eta$$

Quantile Regression

Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables
- *n* training samples $(X_i, Y_i)_{i=1}^n$
- Goal: predict an unseen point Y_{n+1} at X_{n+1} with confidence

and C_{α} should be as small as possible, in order to be informative For example: $\alpha = 0.1$ and obtain a 90% coverage interval

- Construction of the predictive intervals should be
 - agnostic to the model
 - agnostic to the data distribution
 - valid in finite samples

Quantile Regression

Split Conformal Prediction (SCP)

Standard regression case

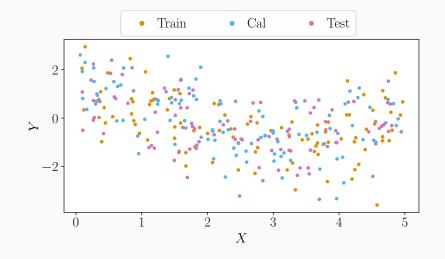
Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

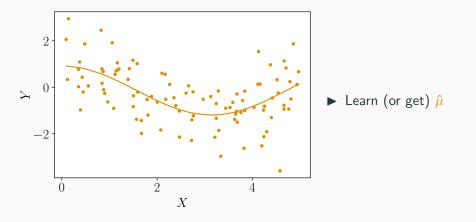
Split Conformal Prediction (SCP)^{1,2,3}: toy example



¹Vovk et al. (2005), Algorithmic Learning in a Random World

²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

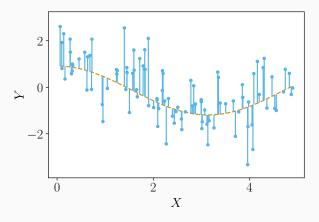
³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B



¹Vovk et al. (2005), Algorithmic Learning in a Random World

²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

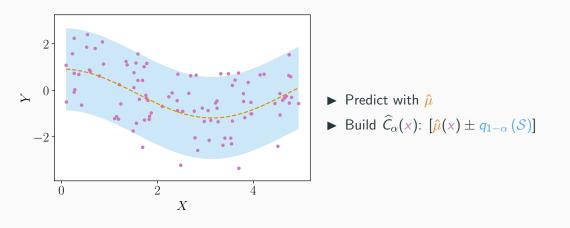


- Predict with $\hat{\mu}$
- Get the |residuals|, a.k.a.
 conformity scores
- Compute the (1α) empirical quantile of $S = \{|\text{residuals}|\}_{Cal} \cup \{+\infty\},\$ noted $q_{1-\alpha}(S)$

¹Vovk et al. (2005), *Algorithmic Learning in a Random World*

²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B



¹Vovk et al. (2005), *Algorithmic Learning in a Random World*

²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

SCP: implementation details

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get $\hat{\mu}$ by training the algorithm \mathcal{A} on the proper training set
- 3. On the calibration set, get prediction values with $\hat{\mu}$
- 4. Obtain a set of #Cal + 1 conformity scores :

$$\mathcal{S} = \{S_i = |\hat{\mu}(X_i) - Y_i|, i \in \operatorname{Cal}\} \cup \{+\infty\}$$

(+ worst-case scenario)

- 5. Compute the 1α quantile of these scores, noted $q_{1-\alpha}(S)$
- 6. For a new point X_{n+1} , return

$$\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = [\widehat{\mu}(X_{n+1}) - q_{1-\alpha}(\mathcal{S}); \widehat{\mu}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})]$$

SCP: implementation details

- Calib. Train
- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get $\hat{\mu}$ by training the algorithm \mathcal{A} on the proper training set
- 3. On the calibration set, get prediction values with $\hat{\mu}$
- 4. Obtain a set of #Cal conformity scores :

$$\mathcal{S} = \{S_i = |\hat{\mu}(X_i) - Y_i|, i \in \operatorname{Cal}\}$$

5. Compute the $(1 - \alpha) \left(\frac{1}{\# \text{Cal}} + 1 \right)$ quantile of these scores, noted $q_{1-\alpha}(S)$ 6. For a new point X_{n+1} , return $\widehat{C}_{\alpha}(X_{n+1}) = [\widehat{\mu}(X_{n+1}) - q_{1-\alpha}(S); \widehat{\mu}(X_{n+1}) + q_{1-\alpha}(S)]$

Definition (Exchangeability)

 $(X_i, Y_i)_{i=1}^n$ are exchangeable if, for any permutation σ of [1, n]:

$$\mathcal{L}\left(\left(X_{1}, Y_{1}\right), \ldots, \left(X_{n}, Y_{n}\right)\right) = \mathcal{L}\left(\left(X_{\sigma(1)}, Y_{\sigma(1)}\right), \ldots, \left(X_{\sigma(n)}, Y_{\sigma(n)}\right)\right),$$

where $\ensuremath{\mathcal{L}}$ designates the joint distribution.

Examples of exchangeable sequences

• i.i.d. samples

• The components of \mathcal{N}

$$\left(\begin{pmatrix}m\\\vdots\\\vdots\\m\end{pmatrix},\begin{pmatrix}\sigma^2&&\\&\ddots&\gamma^2\\&\gamma^2&\ddots\\&&&\sigma^2\end{pmatrix}\right)$$

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable⁴. SCP applied on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

Additionally, if the scores $\{S_i\}_{i \in Cal} \cup \{S_{n+1}\}$ are a.s. distinct:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\}\leq 1-\alpha+\frac{1}{\#\mathrm{Cal}+1}.$$

⁴Only the calibration and test data need to be exchangeable.

Lemma (Quantile lemma)

If $(U_1, \ldots, U_n, U_{n+1})$ are exchangeable, then for any $\beta \in]0, 1[:$ $\mathbb{P}(U_{n+1} \leq q_{\beta}(U_1, \ldots, U_n, +\infty)) \geq \beta.$

Additionally, if $U_1, \ldots, U_n, U_{n+1}$ are almost surely distinct, then: $\mathbb{P}\left(U_{n+1} \leq q_{\beta}(U_1, \ldots, U_n, +\infty)\right) \leq \beta + \frac{1}{n+1}.$

When $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable, the scores $\{S_i\}_{i \in Cal} \cup \{S_{n+1}\}$ are exchangeable. \hookrightarrow applying the quantile lemma to the scores concludes the proof. First note that $U_{n+1} \leq q_{\beta}(U_1, \ldots, U_n, +\infty) \iff U_{n+1} \leq q_{\beta}(U_1, \ldots, U_n, U_{n+1})$. Then, by definition of q_{β} :

$$U_{n+1} \leq q_{\beta}(U_1, \dots, U_n, U_{n+1}) \Longleftrightarrow \mathsf{rank}(U_{n+1}) \leq \lceil \beta(n+1) \rceil$$

By exchangeability,
$$\operatorname{rank}(U_{n+1}) \sim \mathcal{U}\{1, \dots, n+1\}$$
. Thus:
 $\mathbb{P}(\operatorname{rank}(U_{n+1}) \leq \lceil \beta(n+1) \rceil) \geq \frac{\lceil \beta(n+1) \rceil}{n+1} \geq \beta$.

If $U_1, \ldots, U_n, U_{n+1}$ are almost surely distinct (without ties):

$$\mathbb{P}\left(\operatorname{rank}(U_{n+1}) \leq \lceil \beta(n+1) \rceil\right) = \frac{\lceil \beta(n+1) \rceil}{n+1} \\ \leq \frac{1+\beta(n+1)}{n+1} = \beta + \frac{1}{n+1}.$$

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable⁴. SCP applied on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

Additionally, if the scores $\{S_i\}_{i \in \operatorname{Cal}} \cup \{S_{n+1}\}$ are a.s. distinct:

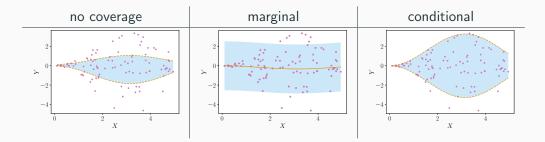
$$\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right)\right\} \leq 1 - \alpha + \frac{1}{\#\mathrm{Cal} + 1}$$

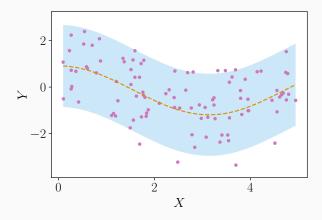
× Marginal coverage:
$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)|X_{n+1}=x\right\}\geq1-lpha$$

⁴Only the calibration and test data need to be exchangeable.

Conditional coverage implies adaptiveness

- Marginal coverage: $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1})\right\}$ the errors may differ across regions of the input space (i.e. non-adaptive)
- Conditional coverage: P { Y_{n+1} ∈ C_α (X_{n+1}) |X_{n+1} } errors are evenly distributed (i.e. fully adaptive)
- Conditional coverage is stronger than marginal coverage





Predict with \$\httyce{\mu}\$
Build \$\hat{C}_{\alpha}(x)\$: [\$\httyce{\mu}(x) \pm q_{1-\alpha}(\mathcal{S})\$]

Informative conditional coverage as such is impossible

• Impossibility results

 \hookrightarrow Vovk (2012); Lei and Wasserman (2014); Barber et al. (2021a)

Without distribution assumption, in finite sample, a perfectly conditionally valid \widehat{C}_{α} is such that $\mathbb{P}\left\{\max\left(\widehat{C}_{\alpha}(x)\right) = \infty\right\} \geq 1 - \alpha$ for any non-atomic x.

• Approximate conditional coverage

 \hookrightarrow Romano et al. (2020a); Guan (2022); Jung et al. (2023); Gibbs et al. (2023) Target $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha} | X_{n+1} \in \mathcal{R}(x)) \ge 1 - \alpha$

Asymptotic (with the sample size) conditional coverage
 → Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al. (2021); Sesia and Romano (2021); Izbicki et al. (2022)

Non exhaustive references.

Quantile Regression

Split Conformal Prediction (SCP)

Standard regression case

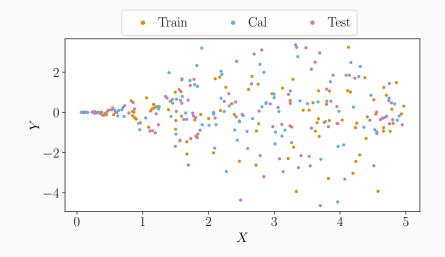
Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

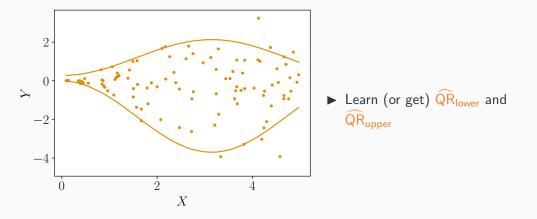
Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

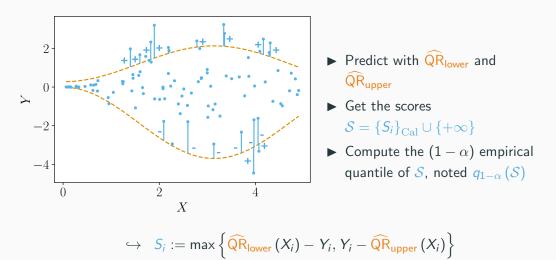
Conformalized Quantile Regression (CQR)⁵



⁵Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

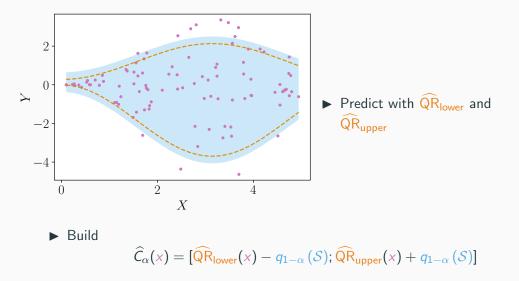


⁵Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS



^bRomano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

Conformalized Quantile Regression (CQR)⁵: prediction step



⁵Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

CQR: implementation details

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get \widehat{QR}_{lower} and \widehat{QR}_{upper} by training the algorithm \mathcal{A} on the proper training set
- 3. Obtain a set of #Cal + 1 conformity scores S:

$$\mathcal{S} = \{S_i = \max\left(\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_i) - Y_i, Y_i - \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_i)\right), i \in \mathrm{Cal}\} \cup \{+\infty\}$$

- 4. Compute the 1α quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$
- 5. For a new point X_{n+1} , return

$$\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = \left[\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_{n+1}) - q_{1-\alpha}(\mathcal{S}); \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})\right]$$

CQR: implementation details

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get \widehat{QR}_{lower} and \widehat{QR}_{upper} by training the algorithm \mathcal{A} on the proper training set
- 3. Obtain a set of #Cal conformity scores S:

$$S = \{S_i = \max\left(\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_i) - Y_i, Y_i - \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_i)\right), i \in \mathsf{Cal}\}$$

4. Compute the $(1 - \alpha) \left(\frac{1}{\# \text{Cal}} + 1 \right)$ quantile of these scores, noted $q_{1-\alpha}(S)$

5. For a new point X_{n+1} , return $\widehat{C}_{\alpha}(X_{n+1}) = \left[\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_{n+1}) - q_{1-\alpha}(S); \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_{n+1}) + q_{1-\alpha}(S)\right]$

CQR: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Romano et al. (2019).

Theorem

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable⁶. CQR on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

If, in addition, the scores $\{S_i\}_{i \in Cal} \cup \{S_{n+1}\}$ are almost surely distinct, then $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right)\right\} \leq 1 - \alpha + \frac{1}{\#Cal + 1}.$

Proof: application of the quantile lemma.

× Marginal coverage:
$$\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right) | X_{n+1} = x\right\} \ge 1 - \alpha$$

⁶Only the calibration and test data need to be exchangeable.

Quantile Regression

Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

SCP is defined by the conformity score function

1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)

Train

Calib

- 2. Get \hat{A} by training the algorithm A on the proper training set
- 3. On the calibration set, obtain #Cal + 1 conformity scores $S = \{S_i = s(\hat{A}(X_i), Y_i), i \in Cal\} \cup \{+\infty\}$ Ex 1: $s(\hat{A}(X_i), Y_i) := |\hat{\mu}(X_i) - Y_i|$ in regression with standard scores Ex 2: $s(\hat{A}(X_i), Y_i) := \max\left(\widehat{QR}_{lower}(X_i) - Y_i, Y_i - \widehat{QR}_{upper}(X_i)\right)$ in CQR
- 4. Compute the 1α quantile of these scores, noted $q_{1-\alpha}(S)$
- 5. For a new point X_{n+1} , return

$$\widehat{\mathcal{C}}_{lpha}(X_{n+1}) = \{y ext{ such that } { extsf{s}}\left(\widehat{A}(X_{n+1}),y
ight) \leq q_{1-lpha}\left(\mathcal{S}
ight)\}$$

 \hookrightarrow The definition of the conformity scores is crucial, as they incorporate almost all the information: data + underlying model

SCP: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Vovk et al. (2005).

Theorem

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable⁷. SCP on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

If, in addition, the scores $\{S_i\}_{i \in Cal} \cup \{S_{n+1}\}$ are almost surely distinct, then $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right)\right\} \leq 1 - \alpha + \frac{1}{\#Cal + 1}.$

Proof: application of the quantile lemma.

× Marginal coverage:
$$\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right) | X_{n+1} = x\right\} \ge 1 - \alpha$$

⁷Only the calibration and test data need to be exchangeable.

SCP: what choices for the regression scores?

 $\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = \{y \text{ such that } \mathbf{s}\left(\widehat{\mathcal{A}}(X_{n+1}), y\right) \leq q_{1-\alpha}\left(\mathcal{S}\right)\}$

	Standard SCP Vovk et al. (2005)	Locally weighted SCP Lei et al. (2018)	CQR Romano et al. (2019)
$s(\hat{A}(X),Y)$		$\frac{ \hat{\mu}(X) - Y }{\hat{\rho}(X)}$	$\max(\widehat{QR}_{lower}(X) - Y,$ $Y - \widehat{QR}_{upper}(X))$
$\widehat{C}_{lpha}(x)$	$[\hat{\mu}(x) \pm q_{1-\alpha}(\mathcal{S})]$	$[\hat{\mu}(x) \pm q_{1-\alpha}(\mathcal{S})\hat{\rho}(x)]$	$[\widehat{QR}_{lower}(x) - q_{1-\alpha}(\mathcal{S});$ $\widehat{QR}_{upper}(x) + q_{1-\alpha}(\mathcal{S})]$
Visu.	$ \begin{array}{c} 2 \\ 0 \\ -2 \\ -4 \\ -4 \\ 0 \\ -2 \\ -4 \\ -4 \\ 0 \\ -2 \\ -4 \\ -4 \\ 0 \\ -2 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4$	$\begin{array}{c} 2\\ 0\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2$	
√	black-box around a "us- able" prediction	black-box around a "usable" prediction	adaptive
×	not adaptive	limited adaptiveness	no black-box around a "us- able" prediction

- $Y \in \{1, \ldots, C\}$
- $\hat{A}(X) = (\hat{p}_1(X), \dots, \hat{p}_C(X))$
- $\mathbf{s}(\hat{A}(X), Y) := 1 (\hat{A}(X))_Y$
- For a new point X_{n+1} , return

 $\widehat{C}_{\alpha}(X_{n+1}) = \{y \text{ such that } \mathbf{s}(\widehat{A}(X_{n+1}), y) \leq q_{1-\alpha}(\mathcal{S})\}$

(C classes)

(estimated probabilities)

Ex: $Y_i \in \{$ "dog", "tiger", "cat" $\}$, with $\alpha = 0.1$

• Scores on the calibration set

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.15	0.15	0.20	0.15	0.15	0.25	0.20
$\hat{\boldsymbol{\rho}}_{tiger}(X_i)$	0.02	0.05	0.10	0.60	0.55	0.50	0.45	0.40	0.35	0.45
$\hat{\boldsymbol{\rho}}_{cat}(X_i)$	0.03	0.05	0.05	0.25	0.30	0.30	0.40	0.45	0.40	0.35
Si	0.05	0.1	0.15	0.40	0.45	0.50	0.55	0.55	0.6	0.65

- $q_{1-\alpha}(\mathcal{S}) = 0.65$
- $\hat{A}(X_{n+1}) = (0.05, 0.60, 0.35)$ $\Rightarrow s(\hat{A}(X_{n+1}), \text{"dog"}) = 0.95$ $\Rightarrow s(\hat{A}(X_{n+1}), \text{"tiger"}) = 0.40 \le q_{1-\alpha}(S)$ $\Rightarrow s(\hat{A}(X_{n+1}), \text{"cat"}) = 0.65 \le q_{1-\alpha}(S)$
- $\widehat{C}_{\alpha}(X_{n+1}) = \{$ "tiger", "cat" $\}$

"dog" $\notin \widehat{C}_{\alpha}(X_{n+1})$ "tiger" $\in \widehat{C}_{\alpha}(X_{n+1})$ "cat" $\in \widehat{C}_{\alpha}(X_{n+1})$

Ex: $Y \in \{$ "dog", "tiger", "cat" $\}$, with $\alpha = 0.1$

• Scores on the calibration set

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.05	0.10	0.10	0.15
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.70	0.25	0.30	0.30
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.25	0.65	0.60	0.55
Si	0.05	0.1	0.15	0.15	0.20	0.25	0.30	0.35	0.40	0.45

•
$$q_{1-\alpha}(\mathcal{S}) = 0.45$$

•
$$\hat{A}(X_{n+1}) = (0.05, 0.60, 0.35)$$

 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"dog"}) = 0.95$
 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"tiger"}) = 0.40 \le q_{1-\alpha}(S)$
 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"cat"}) = 0.65$

 $\begin{array}{l} \text{``dog''} \notin \widehat{C}_{\alpha}(X_{n+1}) \\ \text{``tiger''} \in \widehat{C}_{\alpha}(X_{n+1}) \\ \text{``cat''} \notin \widehat{C}_{\alpha}(X_{n+1}) \end{array}$

• $\widehat{C}_{\alpha}(X_{n+1}) = \{$ "tiger" $\}$

The standard classification conformity score function leads to:

- \checkmark smallest prediction sets on average
- X undercovering (overcovering) hard (easy) subgroups

(similar to the standard mean regression case!)

 \Rightarrow Other score functions can be built to improve adaptiveness

(as in regression with localized scores)

SCP: classification with Adaptive Prediction Sets⁸

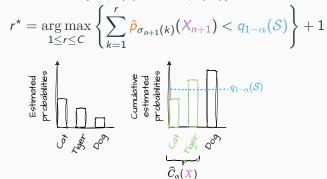
1. Sort in decreasing order $\hat{\rho}_{\sigma(1)}(X) \ge \ldots \ge \hat{\rho}_{\sigma(C)}(X)$

2.
$$\mathbf{s}(\hat{A}(X), Y) := \sum_{k=1}^{\sigma} \hat{p}_{\sigma(k)}(X)$$

(sum of the estimated probabilities

associated to classes at least as large as that of the true class Y)

3. Return the set of classes $\{\sigma_{n+1}(1), \ldots, \sigma_{n+1}(r^*)\}$, where



⁸Romano et al. (2020b), *Classification with Valid and Adaptive Coverage*, NeurIPS Figure highly inspired by Angelopoulos and Bates (2023).

Ex: $Y \in \{$ "dog", "tiger", "cat" $\}$, with $\alpha = 0.1$

• Scores on the calibration set

"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
0.95	0.90	0.85	0.05	0.05	0.05	0.10	0.25	0.10	0.15
0.02	0.05	0.10	0.85	0.80	0.75	0.75	0.40	0.30	0.30
0.03	0.05	0.05	0.10	0.15	0.20	0.15	0.35	0.60	0.55
0.95	0.90	0.85	0.85	0.80	0.75	0.75	0.75	0.60	0.55
	0.95 0.02 0.03	0.95 0.90 0.02 0.05 0.03 0.05	0.95 0.90 0.85 0.02 0.05 0.10 0.03 0.05 0.05	0.95 0.90 0.85 0.05 0.02 0.05 0.10 0.85 0.03 0.05 0.05 0.10	0.95 0.90 0.85 0.05 0.05 0.02 0.05 0.10 0.85 0.80 0.03 0.05 0.05 0.10 0.15	0.95 0.90 0.85 0.05 0.05 0.05 0.02 0.05 0.10 0.85 0.80 0.75 0.03 0.05 0.05 0.10 0.15 0.20	0.95 0.90 0.85 0.05 0.05 0.05 0.10 0.02 0.05 0.10 0.85 0.80 0.75 0.75 0.03 0.05 0.05 0.10 0.15 0.20 0.15	0.95 0.90 0.85 0.05 0.05 0.05 0.10 0.25 0.02 0.05 0.10 0.85 0.80 0.75 0.75 0.40 0.03 0.05 0.05 0.10 0.15 0.20 0.15 0.35	0.02 0.05 0.10 0.85 0.80 0.75 0.75 0.40 0.30 0.03 0.05 0.05 0.10 0.15 0.20 0.15 0.35 0.60

•
$$q_{1-\alpha}(\mathcal{S}) = 0.95$$

$$\hookrightarrow$$
 Ex 1: $\hat{A}(X_{n+1}) = (0.05, 0.45, 0.5), r^* = 2$

 \hookrightarrow Ex 2: $\hat{A}(X_{n+1}) = (0.03, 0.95, 0.02), r^* = 1$

 $\widehat{C}_{\alpha}(X_{n+1}) = \{\text{``tiger'', ``cat''}\}$

$$\widehat{C}_{\alpha}(X_{n+1}) = \{$$
 "tiger" $\}$

- **Simple** procedure which quantifies the uncertainty of **any** predictive model \hat{A} by returning predictive regions
- Finite-sample guarantees
- Distribution-free as long as the data are exchangeable (and so are the scores)
- Marginal theoretical guarantee over the joint (X, Y) distribution, and not conditional, i.e., no guarantee that for any x:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)|X_{n+1}=x\right\}\geq 1-\alpha.$$

 \hookrightarrow marginal also over the whole calibration set and the test point!

- Conditional coverage
- Computational cost vs statistical power
- Exchangeability

(~ Previous Section) (Next Section) (Last Section) Quantile Regression

Split Conformal Prediction (SCP)

Avoiding data splitting: full conformal and out-of-bags approaches Full Conformal Prediction Jackknife+

Beyond exchangeability

Quantile Regression

Split Conformal Prediction (SCP)

Avoiding data splitting: full conformal and out-of-bags approaches Full Conformal Prediction

Jackknife+

Beyond exchangeability

SCP suffers from data splitting:

- lower statistical efficiency (lower model accuracy and higher predictive set size)
- higher statistical variability

Can we avoid splitting the data set?

• A naive idea:

- Get \hat{A} by training the algorithm A on $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$.
- compute the empirical quantile $q_{1-\alpha}(\mathcal{S})$ of the set of scores

$$\mathcal{S} = \left\{ \mathbf{s} \left(\hat{A}(X_i), Y_i \right) \right\}_{i=1}^n \cup \{\infty\}.$$

• output the set $\{y \text{ such that } \mathbf{s}\left(\hat{A}(X_{n+1}), y\right) \leq q_{1-\alpha}(\mathcal{S})\}$.

Â has been obtained using the training set {(X₁, Y₁),..., (X_n, Y_n)} but did not use X_{n+1}.
 ⇒ s (Â(X_{n+1}), y) stochastically dominates any element of { s (Â(X_i), Y_i) }ⁿ_{i=1}.

- Full (or transductive) Conformal Prediction
 - avoids data splitting
 - at the cost of many more model fits
- Idea: the most probable labels Y_{n+1} live in 𝔅, and have a low enough conformity score. By looping over all possible y ∈ 𝔅, the ones leading to the smallest conformity scores will be found.

⁹Vovk et al. (2005), Algorithmic Learning in a Random World

For any candidate (X_{n+1}, y) :

- 1. Get \hat{A}_y by training \mathcal{A} on $\{(X_1, Y_1), \ldots, (X_n, Y_n)\} \cup \{(X_{n+1}, y)\}$
- 2. Obtain a set of training scores $S_{y}^{(\text{train})} = \left\{ s\left(\hat{A}_{y}(X_{i}), Y_{i}\right) \right\}_{i=1}^{n} \cup \left\{ s\left(\hat{A}_{y}(X_{n+1}), y\right) \right\}$ and compute their $1 - \alpha$ empirical quantile $q_{1-\alpha}\left(S_{y}^{(\text{train})}\right)$

Output the set $\left\{ y \text{ such that } \mathbf{s}\left(\hat{A}_{y}\left(X_{n+1}\right), y\right) \leq q_{1-\alpha}\left(\mathcal{S}_{y}^{(\text{train})}\right) \right\}.$

Test point treated in the same way than train points
 Computationally costly

Definition (Symmetrical algorithm)

A deterministic algorithm $\mathcal{A} : (U_1, \ldots, U_n) \mapsto \hat{A}$ is symmetric if for any permutation σ of $\llbracket 1, n \rrbracket$: $\mathcal{A} (U_1, \ldots, U_n) \stackrel{\text{a.s.}}{=} \mathcal{A} (U_{\sigma(1)}, \ldots, U_{\sigma(n)}).$ Full CP enjoys finite sample guarantees proved in Vovk et al. (2005).

Theorem

Suppose that

- (i) $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable,
- (ii) the algorithm \mathcal{A} is symmetric.

Full CP applied on
$$(X_i, Y_i)_{i=1}^n \cup \{X_{n+1}\}$$
 outputs $\widehat{C}_{\alpha}(\cdot)$ such that:
 $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1})\right\} \ge 1 - \alpha.$

Additionally, if the scores are a.s. distinct:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\leq 1-\alpha+\frac{1}{n+1}.$$

★ Marginal coverage: $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right) | X_{n+1} = x\right\} \ge 1 - \alpha$

FCP sets with an interpolating algorithm

Assume \mathcal{A} interpolates:

•
$$\hat{A} = \mathcal{A}((x_1, y_1), \dots, (x_{n+1}, y_{n+1}))$$

•
$$\hat{A}(x_k) - y_k = 0$$
 for any $k \in \llbracket 1, n+1 \rrbracket$

 \Rightarrow Full Conformal Prediction *(with standard score functions)* outputs \mathcal{Y} (the whole label space) for any new test point!

Quantile Regression

Split Conformal Prediction (SCP)

Avoiding data splitting: full conformal and out-of-bags approaches

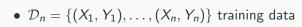
Full Conformal Prediction

 $\mathsf{Jackknife}+$

Beyond exchangeability

Jackknife: the naive idea does not enjoy valid coverage

Based on leave-one-out (LOO) residuals



- Get \hat{A}_{-i} by training \mathcal{A} on $\mathcal{D}_n \setminus (X_i, Y_i)$
- LOO scores $S = \left\{ |\hat{A}_{-i}(X_i) Y_i| \right\}_i \cup \{+\infty\}$ (in standard mean regression)

- Get \hat{A} by training \mathcal{A} on \mathcal{D}_n
- Build the predictive interval: $\left[\hat{A}(X_{n+1}) \pm q_{1-\alpha}(S)\right]$

Warning

No guarantee on the prediction of \hat{A} with scores based on $(\hat{A}_{-i})_i$, without assuming a form of **stability** on A.

Jackknife+¹⁰

• Based on leave-one-out (LOO) residuals

- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Get \hat{A}_{-i} by training \mathcal{A} on $\mathcal{D}_n \setminus (X_i, Y_i)$
- LOO predictions / predictive intervals $S_{up/down} = \left\{ \hat{A}_{-i}(X_{n+1}) \pm |\hat{A}_{-i}(X_i) - Y_i| \right\} \cup \{\pm \infty\}$

(in standard mean regression)

• Build the predictive interval: $[q_{\alpha,inf}(\mathcal{S}_{down}); q_{1-\alpha}(\mathcal{S}_{up})]$

Theorem

If $\mathcal{D}_n \cup (X_{n+1}, Y_{n+1})$ are exchangeable and \mathcal{A} is symmetric: $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1})) \ge 1 - 2\alpha$.

¹⁰Barber et al. (2021b), *Predictive Inference with the jackknife+*, The Annals of Statistics Recall $q_{\beta,inf}(X_1, \ldots, X_n) := \lfloor \beta \times n \rfloor$ smallest value of (X_1, \ldots, X_n)

CV+ ¹¹ (see also cross-conformal predictors: Vovk, 2015)

48 / 55

- Based on cross-validation residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Split \mathcal{D}_n into K folds F_1, \ldots, F_K
- Get \hat{A}_{-F_k} by training \mathcal{A} on $\mathcal{D}_n \setminus F_k$
- Cross-val predictions / predictive intervals

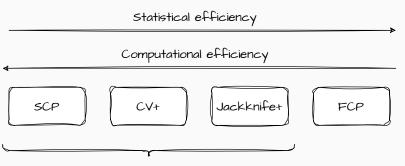
$$\mathcal{S}_{up/down} = \left\{ \left\{ \hat{A}_{-F_k}(X_{n+1}) \pm |\hat{A}_{-F_k}(X_i) - Y_i| \right\}_{i \in F_k} \right\}_k \cup \{\pm \infty\}$$
(in standard mean regression)

• Build the predictive interval: $[q_{\alpha,inf}(\mathcal{S}_{down}); q_{1-\alpha}(\mathcal{S}_{up})]$

Theorem

If
$$\mathcal{D}_n \cup (X_{n+1}, Y_{n+1})$$
 are exchangeable and \mathcal{A} is symmetric:
 $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1})) \ge 1 - 2\alpha - \min\left(\frac{2(1-1/K)}{n/K+1}, \frac{1-K/n}{K+1}\right) \ge 1 - 2\alpha - \sqrt{2/n}.$

¹¹Barber et al. (2021b), *Predictive Inference with the jackknife+*, The Annals of Statistics Recall $q_{\beta,inf}(X_1, \ldots, X_n) := \lfloor \beta \times n \rfloor$ smallest value of (X_1, \ldots, X_n)



Nested Conformal Prediction

- Generalized framework encapsulating out-of-sample methods: Nested CP (Gupta et al., 2022)
- Accelerating FCP: Nouretdinov et al. (2001); Lei (2019); Ndiaye and Takeuchi (2019); Cherubin et al. (2021); Ndiaye and Takeuchi (2022); Ndiaye (2022)

Non exhaustive references.

Quantile Regression

Split Conformal Prediction (SCP)

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

- CP requires exchangeable data points to ensure validity
- X Covariate shift, i.e. \mathcal{L}_X changes but $\mathcal{L}_{Y|X}$ stays constant
- X Label shift, i.e. \mathcal{L}_Y changes but $\mathcal{L}_{X|Y}$ stays constant
- × Arbitrary distribution shift
- × Possibly many shifts, not only one

Covariate shift (Tibshirani et al., 2019)¹²

- Setting:
 - $\circ (X_1, Y_1), \ldots, (X_n, Y_n) \overset{i.i.d.}{\sim} P_X \times P_{Y|X}$
 - $\circ (X_{n+1}, Y_{n+1}) \sim \tilde{P}_X \times P_{Y|X}$
- Idea: give more importance to calibration points that are closer in distribution to the test point
- In practice:

 - 1. estimate the likelihood ratio $w(X_i) = \frac{\mathrm{d}\tilde{P}_X(X_i)}{\mathrm{d}P_X(X_i)}$ 2. normalize the weights, i.e. $\omega_i = \omega(X_i) = \frac{w(X_i)}{\sum_{i=1}^{n+1} w(X_i)}$

3. outputs
$$\widehat{C}_{\alpha}(X_{n+1}) =$$

$$\left\{ y : \mathbf{s}(\widehat{A}(X_{n+1}), y) \leq q_{1-\alpha}(\{\omega_i S_i\}_{i \in \operatorname{Cal}} \cup \{+\infty\}) \right\}$$

¹²Tibshirani et al. (2019), Conformal Prediction Under Covariate Shift, NeurIPS

Label shift (Podkopaev and Ramdas, 2021)¹³

- Setting:
 - $\circ (X_1, Y_1), \ldots, (X_n, Y_n) \overset{i.i.d.}{\sim} P_{X|Y} \times P_Y$
 - $\circ (X_{n+1}, Y_{n+1}) \sim P_{X|Y} \times \tilde{P}_Y$
 - Classification
- Idea: give more importance to calibration points that are closer in distribution to the test point
- Trouble: the actual test labels are unknown
- In practice:
 - 1. estimate the likelihood ratio $w(Y_i) = \frac{d\tilde{P}_Y(Y_i)}{dP_Y(Y_i)}$ using algorithms from the existing label shift literature
 - 2. normalize the weights, i.e. $\omega_i^y = \omega^y(X_i) = \frac{w(Y_i)}{\sum_{j=1}^n w(Y_j) + w(y)}$
 - 3. outputs $\widehat{C}_{lpha}(X_{n+1}) =$

$$\left\{y: \mathbf{s}(\hat{A}(X_{n+1}), y) \leq q_{1-\alpha}\left(\{\omega_i^y S_i\}_{i \in \operatorname{Cal}} \cup \{+\infty\}\right)\right\}$$

¹³Podkopaev and Ramdas (2021), Distribution-free uncertainty quantification for classification under label shift, UAI 52 / 55

- Arbitrary distribution shift: Cauchois et al. (2020) leverages ideas from the distributionally robust optimization literature
- Two major general theoretical results beyond exchangeability:
 - Chernozhukov et al. (2018)

 \hookrightarrow If the learnt model is accurate and the data noise is strongly mixing, then CP is valid asymptotically \checkmark

• Barber et al. (2022)

 \hookrightarrow Quantifies the coverage loss depending on the strength of exchangeability violation

 $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1})) \geq 1 - \alpha - \overset{\text{average violation of exchangeability}}{\underset{\text{by each calibration point}}{\text{worker}}}$

e.g., in a temporal setting, give higher weights to more recent points.

- Data: T_0 random variables $(X_1, Y_1), \ldots, (X_{T_0}, Y_{T_0})$ in $\mathbb{R}^d \times \mathbb{R}$
- Aim: predict the response values as well as predictive intervals for T₁ subsequent observations X_{T0+1},..., X_{T0+T1} sequentially: at any prediction step t ∈ [[T₀ + 1, T₀ + T₁]], Y_{t-T0},..., Y_{t-1} have been revealed
- Build the smallest interval \widehat{C}^t_{α} such that:

$$\mathbb{P}\left\{Y_t \in \widehat{C}^t_{\alpha}\left(X_t\right)\right\} \ge 1 - \alpha, \text{ for } t \in \llbracket T_0 + 1, T_0 + T_1 \rrbracket,$$

often simplified in:

$$\frac{1}{T_1}\sum_{t=T_0+1}^{T_0+T_1} \mathbb{1}\left\{Y_t \in \widehat{C}^t_{\alpha}(X_t)\right\} \approx 1-\alpha.$$

Recent developments

- Consider splitting strategies that respect the temporal structure
- Gibbs and Candès (2021) propose a method which reacts faster to temporal evolution
 - Idea: track the previous coverages of the predictive intervals $(\mathbb{1}\{Y_t \in \widehat{C}_{\alpha}(X_t)\})$
 - $\circ~$ Tool: update the empirical quantile level with a learning rate γ
 - $\circ~$ Asymptotic guarantee (on average) for any distribution (even adversarial)
- Zaffran et al. (2022) studies the influence of this learning rate γ and proposes, along with Gibbs and Candès (2022), a method not requiring to choose γ
- Bhatnagar et al. (2023) enjoys **anytime** regret bound, by leveraging tools from the strongly adaptive regret minimization literature
- Bastani et al. (2022) proposes an algorithm achieving stronger coverage guarantees (conditional on specified overlapping subsets, and threshold calibrated) without hold-out set
- Angelopoulos et al. (2023) combines CP ideas with control theory ones, to adaptively improve the predictive intervals depending on the errors structure

Non exhaustive references.

- Angelopoulos, A. N. and Bates, S. (2023). Conformal prediction: A gentle introduction. *Foundations and Trends* (*R*) *in Machine Learning*, 16(4).
- Angelopoulos, A. N., Candès, E. J., and Tibshirani, R. J. (2023). Conformal pid control for time series prediction. arXiv: 2307.16895.
- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021a). The limits of distribution-free conditional predictive inference. *Information and Inference: A Journal of the IMA*, 10(2).
- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021b). Predictive inference with the jackknife+. *The Annals of Statistics*, 49(1).
- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2022). Conformal prediction beyond exchangeability. To appear in *Annals of Statistics (2023)*.

- Bastani, O., Gupta, V., Jung, C., Noarov, G., Ramalingam, R., and Roth, A.
 (2022). Practical adversarial multivalid conformal prediction. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Bhatnagar, A., Wang, H., Xiong, C., and Bai, Y. (2023). Improved online conformal prediction via strongly adaptive online learning. In *Proceedings of the* 40th International Conference on Machine Learning. PMLR.
- Cauchois, M., Gupta, S., Ali, A., and Duchi, J. C. (2020). Robust Validation: Confident Predictions Even When Distributions Shift. arXiv: 2008.04267.
- Chernozhukov, V., Wüthrich, K., and Yinchu, Z. (2018). Exact and Robust Conformal Inference Methods for Predictive Machine Learning with Dependent Data. In *Conference On Learning Theory*. PMLR.
- Chernozhukov, V., Wüthrich, K., and Zhu, Y. (2021). Distributional conformal prediction. *Proceedings of the National Academy of Sciences*, 118(48).

- Cherubin, G., Chatzikokolakis, K., and Jaggi, M. (2021). Exact optimization of conformal predictors via incremental and decremental learning. In *Proceedings* of the 38th International Conference on Machine Learning. PMLR.
- Fontana, M., Zeni, G., and Vantini, S. (2023). Conformal prediction: A unified review of theory and new challenges. *Bernoulli*, 29(1).
- Gibbs, I. and Candès, E. (2021). Adaptive conformal inference under distribution shift. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Gibbs, I. and Candès, E. (2022). Conformal inference for online prediction with arbitrary distribution shifts. arXiv: 2208.08401.
- Gibbs, I., Cherian, J. J., and Candès, E. J. (2023). Conformal prediction with conditional guarantees. arXiv: 2305.12616.

- Guan, L. (2022). Localized conformal prediction: a generalized inference framework for conformal prediction. *Biometrika*, 110(1).
- Gupta, C., Kuchibhotla, A. K., and Ramdas, A. (2022). Nested conformal prediction and quantile out-of-bag ensemble methods. *Pattern Recognition*, 127.
- Izbicki, R., Shimizu, G., and Stern, R. B. (2022). CD-split and HPD-split: Efficient conformal regions in high dimensions. *Journal of Machine Learning Research*, 23(87).
- Jung, C., Noarov, G., Ramalingam, R., and Roth, A. (2023). Batch multivalid conformal prediction. In *International Conference on Learning Representations*.
- Kivaranovic, D., Johnson, K. D., and Leeb, H. (2020). Adaptive, Distribution-Free Prediction Intervals for Deep Networks. In *International Conference on Artificial Intelligence and Statistics*. PMLR.

- Lei, J. (2019). Fast exact conformalization of the lasso using piecewise linear homotopy. *Biometrika*, 106(4).
- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. *Journal of the American Statistical Association*.
- Lei, J. and Wasserman, L. (2014). Distribution-free prediction bands for non-parametric regression. *Journal of the Royal Statistical Society: Series B* (*Statistical Methodology*), 76(1).
- Manokhin, V. (2022). Awesome conformal prediction.
 - https://github.com/valeman/awesome-conformal-prediction.
- Ndiaye, E. (2022). Stable conformal prediction sets. In *Proceedings of the 39th International Conference on Machine Learning*. PMLR.

- Ndiaye, E. and Takeuchi, I. (2019). Computing full conformal prediction set with approximate homotopy. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Ndiaye, E. and Takeuchi, I. (2022). Root-finding approaches for computing conformal prediction set. *Machine Learning*, 112(1).
- Nouretdinov, I., Melluish, T., and Vovk, V. (2001). Ridge regression confidence machine. In *Proceedings of the 18th International Conference on Machine Learning*.
- Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002). Inductive Confidence Machines for Regression. In *Machine Learning: ECML*. Springer.
- Podkopaev, A. and Ramdas, A. (2021). Distribution-free uncertainty quantification for classification under label shift. In *Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence*. PMLR.

- Romano, Y., Barber, R. F., Sabatti, C., and Candès, E. (2020a). With Malice Toward None: Assessing Uncertainty via Equalized Coverage. *Harvard Data Science Review*, 2(2).
- Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. In Advances in Neural Information Processing Systems. Curran Associates, Inc.
- Romano, Y., Sesia, M., and Candes, E. (2020b). Classification with valid and adaptive coverage. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Sesia, M. and Romano, Y. (2021). Conformal prediction using conditional histograms. In Advances in Neural Information Processing Systems. Curran Associates, Inc.

- Tibshirani, R. J., Barber, R. F., Candes, E., and Ramdas, A. (2019). Conformal Prediction Under Covariate Shift. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Vovk, V. (2012). Conditional Validity of Inductive Conformal Predictors. In Asian Conference on Machine Learning. PMLR.
- Vovk, V. (2015). Cross-conformal predictors. *Annals of Mathematics and Artificial Intelligence*, 74(1-2).
- Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US.
- Zaffran, M., Féron, O., Goude, Y., Josse, J., and Dieuleveut, A. (2022). Adaptive conformal predictions for time series. In *Proceedings of the 39th International Conference on Machine Learning*. PMLR.

This tutorial by Margaux Zaffran (2023) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. https://conformalpredictionintro.github.io