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Useful resources on Conformal Prediction (non exhaustive)

• Book reference: Vovk et al. (2005) (new edition in 2022)

• A gentle tutorial:

◦ Angelopoulos and Bates (2023)

◦ Videos playlist

• Another tutorial: Fontana et al. (2023)

• Ryan Tibshirani introductive lecture’s notes

• GitHub repository with plenty of links: Manokhin (2022)

All material is freely accessible on this webpage, including sources.

Feel free to reuse it for presentations or teaching! If you do, please credit this

version, and include a link to this webpage.

This tutorial by Margaux Zaffran (2023) is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike 4.0 International License.

https://conformalpredictionintro.github.io
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https://www.youtube.com/playlist?list=PLBa0oe-LYIHa68NOJbMxDTMMjT8Is4WkI
https://www.stat.berkeley.edu/~ryantibs/statlearn-s23/lectures/conformal.pdf
https://github.com/valeman/awesome-conformal-prediction
https://conformalpredictionintro.github.io
https://conformalpredictionintro.github.io


On the importance of quantifying uncertainty
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↪→ Same predictions, yet 3 distinct underlying phenomena!

=⇒ Quantifying uncertainty conveys this information.
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Quantile Regression

Split Conformal Prediction (SCP)

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability



Reminder about quantiles

• Quantile level β ∈ [0, 1]

• QX (β) := inf{x ∈ R,P(X ≤ x) ≥ β}
:= inf{x ∈ R,FX (x) ≥ β}

• Empirical quantile qβ(X1, . . . ,Xn)

:= dβ × ne smallest value of (X1, . . . ,Xn)

Example of quantile: the median

β = 0.5

↪→ q0.5(X1, . . . ,Xn) is the empirical median of (X1, . . . ,Xn);

↪→ QX (0.5) represents the median of the distribution of X .

Similarly, let qβ,inf(X1, . . . ,Xn) := bβ × nc smallest value of (X1, . . . ,Xn)
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Median regression

• The Bayes predictor depends on the chosen loss function.
↪→ Bayes predictor f ? ∈ argmin

f
Risk`(f )

:= argmin
f

E [`(Y , f (X ))]

• Mean Absolute Error (MAE): `(Y ,Y ′) = |Y − Y ′| Associated risk:

Risk`(f ) = E [|Y − f (X )|]

⇒ f ?(X ) = median [Y |X ] = QY |X (0.5)
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Generalization: Quantile regression

• Quantile level β ∈ [0, 1]

• Pinball loss

`β(Y ,Y ′) = β|Y − Y ′|1{|Y−Y ′|≥0} + (1− β)|Y − Y ′|1{|Y−Y ′|≤0}

Associated risk: Risk`β (f ) = E [`β(Y , f (X ))]

Bayes predictor: f ? ∈ argmin
f

Risk`β (f )

⇒ f ?(X ) = QY |X (β)
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Quantile regression: foundations

• Link between the pinball loss and the quantiles?

Set q? ∈ argmin
q

E [`β(Y − q)]. Then,

0 =

∫ +∞

−∞
`′β(y − q?)dfY (y)

= (β − 1)

∫ q?

−∞
dfY (y) + β

∫ +∞

q?
dfY (y)

0 = (β − 1)FY (q?) + β(1− FY (q?))

(1− β)FY (q?) = β(1− FY (q?))

β = FY (q?)

⇔ q? = F−1
Y (β)
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Quantile regression: visualisation
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Warning

No theoretical guarantee with a finite sample!

P
(
Y ∈

[
Q̂Y |X (β/2); Q̂Y |X (1− β/2)

])
6= 1− β
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Quantile Regression

Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability



Quantifying predictive uncertainty

• (X ,Y ) ∈ Rd ×R random variables

• n training samples (Xi ,Yi )
n
i=1

• Goal: predict an unseen point Yn+1 at Xn+1 with confidence

• How? Given a miscoverage level α ∈ [0, 1], build a predictive set Cα such that:

P {Yn+1 ∈ Cα (Xn+1)} ≥ 1− α, (1)

and Cα should be as small as possible, in order to be informative

For example: α = 0.1 and obtain a 90% coverage interval

• Construction of the predictive intervals should be

◦ agnostic to the model

◦ agnostic to the data distribution

◦ valid in finite samples
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Quantile Regression

Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability



Split Conformal Prediction (SCP)1,2,3: toy example
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Vovk et al. (2005), Algorithmic Learning in a Random World

2
Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

3
Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)1,2,3: training step
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Vovk et al. (2005), Algorithmic Learning in a Random World

2
Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

3
Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)1,2,3: calibration step
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I Predict with µ̂

I Get the |residuals|, a.k.a.

conformity scores

I Compute the (1− α) empirical

quantile of

S = {|residuals|}Cal ∪ {+∞},
noted q1−α (S)

1
Vovk et al. (2005), Algorithmic Learning in a Random World

2
Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

3
Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)1,2,3: prediction step
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I Predict with µ̂

I Build Ĉα(x): [µ̂(x)± q1−α (S)]

1
Vovk et al. (2005), Algorithmic Learning in a Random World

2
Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

3
Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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SCP: implementation details

Calib. Train

1. Randomly split the training data into a proper training set (size #Tr) and a

calibration set (size #Cal)

2. Get µ̂ by training the algorithm A on the proper training set

3. On the calibration set, get prediction values with µ̂

4. Obtain a set of #Cal + 1 conformity scores :

S = {Si = |µ̂(Xi )− Yi |, i ∈ Cal} ∪ {+∞}
(+ worst-case scenario)

5. Compute the 1− α quantile of these scores, noted q1−α (S)

6. For a new point Xn+1, return

Ĉα(Xn+1) = [µ̂(Xn+1)− q1−α (S); µ̂(Xn+1) + q1−α (S)]
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SCP: theoretical foundation

Definition (Exchangeability)

(Xi ,Yi )
n
i=1 are exchangeable if, for any permutation σ of J1, nK:

L ((X1,Y1) , . . . , (Xn,Yn)) = L
((
Xσ(1),Yσ(1)

)
, . . . ,

(
Xσ(n),Yσ(n)

))
,

where L designates the joint distribution.

Examples of exchangeable sequences

• i.i.d. samples

• The components of N
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SCP: theoretical guarantees

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem

Suppose (Xi ,Yi )
n+1
i=1 are exchangeable4. SCP applied on (Xi ,Yi )

n
i=1 outputs

Ĉα (·) such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

Additionally, if the scores {Si}i∈Cal ∪ {Sn+1} are a.s. distinct:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α +

1

#Cal + 1
.

4Only the calibration and test data need to be exchangeable.
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Proof architecture of SCP guarantees

Lemma (Quantile lemma)

If (U1, . . . ,Un,Un+1) are exchangeable, then for any β ∈]0, 1[:

P (Un+1 ≤ qβ(U1, . . . ,Un,+∞)) ≥ β.

Additionally, if U1, . . . ,Un,Un+1 are almost surely distinct, then:

P (Un+1 ≤ qβ(U1, . . . ,Un,+∞)) ≤ β +
1

n + 1
.

When (Xi ,Yi )
n+1
i=1 are exchangeable, the scores {Si}i∈Cal∪{Sn+1} are exchangeable.

↪→ applying the quantile lemma to the scores concludes the proof.
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Proof of the quantile lemma

First note that Un+1 ≤ qβ(U1, . . . ,Un,+∞)⇐⇒ Un+1 ≤ qβ(U1, . . . ,Un,Un+1).

Then, by definition of qβ:

Un+1 ≤ qβ(U1, . . . ,Un,Un+1)⇐⇒ rank(Un+1) ≤ dβ(n + 1)e

By exchangeability, rank(Un+1) ∼ U{1, . . . , n + 1}. Thus:

P (rank(Un+1) ≤ dβ(n + 1)e) ≥ dβ(n + 1)e
n + 1

≥ β.
If U1, . . . ,Un,Un+1 are almost surely distinct (without ties):

P (rank(Un+1) ≤ dβ(n + 1)e) =
dβ(n + 1)e

n + 1

≤ 1 + β(n + 1)

n + 1
= β +

1

n + 1
.
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SCP: theoretical guarantees

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem

Suppose (Xi ,Yi )
n+1
i=1 are exchangeable4. SCP applied on (Xi ,Yi )

n
i=1 outputs

Ĉα (·) such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

Additionally, if the scores {Si}i∈Cal ∪ {Sn+1} are a.s. distinct:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α +

1

#Cal + 1
.

7 Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α

4Only the calibration and test data need to be exchangeable.
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Conditional coverage implies adaptiveness

• Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)

}
the errors may differ across regions

of the input space (i.e. non-adaptive)

• Conditional coverage: P
{
Yn+1 ∈ Ĉα (Xn+1) |Xn+1

}
errors are evenly distributed

(i.e. fully adaptive)

• Conditional coverage is stronger than marginal coverage

no coverage marginal conditional
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Standard mean-regression SCP is not adaptive
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I Predict with µ̂

I Build Ĉα(x): [µ̂(x)± q1−α (S)]
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Informative conditional coverage as such is impossible

• Impossibility results

↪→ Vovk (2012); Lei and Wasserman (2014); Barber et al. (2021a)

Without distribution assumption, in finite sample, a perfectly condition-

ally valid Ĉα is such that P
{

mes
(
Ĉα(x)

)
=∞

}
≥ 1 − α for any

non-atomic x .

• Approximate conditional coverage

↪→ Romano et al. (2020a); Guan (2022); Jung et al. (2023); Gibbs et al. (2023)

Target P(Yn+1 ∈ Ĉα|Xn+1 ∈ R(x)) ≥ 1− α
• Asymptotic (with the sample size) conditional coverage

↪→ Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al.

(2021); Sesia and Romano (2021); Izbicki et al. (2022)

Non exhaustive references.
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Quantile Regression

Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability



Conformalized Quantile Regression (CQR)5
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Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)5: training step
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Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)5: calibration step

+

+

+ ++
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I Predict with Q̂Rlower and

Q̂Rupper

I Get the scores

S = {Si}Cal ∪ {+∞}
I Compute the (1− α) empirical

quantile of S, noted q1−α (S)

↪→ Si := max
{

Q̂Rlower (Xi )− Yi ,Yi − Q̂Rupper (Xi )
}

5
Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)5: prediction step
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I Predict with Q̂Rlower and

Q̂Rupper

I Build

Ĉα(x) = [Q̂Rlower(x)− q1−α (S); Q̂Rupper(x) + q1−α (S)]

5
Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

25 / 55



CQR: implementation details

Calib. Train

1. Randomly split the training data into a proper training set (size #Tr) and a

calibration set (size #Cal)

2. Get Q̂Rlower and Q̂Rupper by training the algorithm A on the proper training

set

3. Obtain a set of #Cal + 1 conformity scores S:

S = {Si = max
(

Q̂Rlower(Xi )− Yi ,Yi − Q̂Rupper(Xi )
)
, i ∈ Cal} ∪ {+∞}

4. Compute the 1− α quantile of these scores, noted q1−α (S)

5. For a new point Xn+1, return

Ĉα(Xn+1) = [Q̂Rlower(Xn+1)− q1−α (S); Q̂Rupper(Xn+1) + q1−α (S)]
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CQR: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Romano

et al. (2019).

Theorem

Suppose (Xi ,Yi )
n+1
i=1 are exchangeable6. CQR on (Xi ,Yi )

n
i=1 outputs Ĉα (·) such

that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

If, in addition, the scores {Si}i∈Cal ∪ {Sn+1} are almost surely distinct, then

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α +

1

#Cal + 1
.

Proof: application of the quantile lemma.

7 Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α

6Only the calibration and test data need to be exchangeable.
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Quantile Regression

Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability



SCP is defined by the conformity score function

Calib. Train

1. Randomly split the training data into a proper training set (size #Tr) and a

calibration set (size #Cal)

2. Get Â by training the algorithm A on the proper training set

3. On the calibration set, obtain #Cal + 1 conformity scores

S = {Si = s (Â(Xi ),Yi ), i ∈ Cal} ∪ {+∞}
Ex 1: s (Â(Xi ),Yi ) := |µ̂(Xi )− Yi | in regression with standard scores

Ex 2: s (Â(Xi ),Yi ) := max
(

Q̂Rlower(Xi )− Yi ,Yi − Q̂Rupper(Xi )
)

in CQR

4. Compute the 1− α quantile of these scores, noted q1−α (S)

5. For a new point Xn+1, return

Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}
↪→ The definition of the conformity scores is crucial, as they incorporate almost all

the information: data + underlying model
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SCP: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Vovk

et al. (2005).

Theorem

Suppose (Xi ,Yi )
n+1
i=1 are exchangeable7. SCP on (Xi ,Yi )

n
i=1 outputs Ĉα (·) such

that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

If, in addition, the scores {Si}i∈Cal ∪ {Sn+1} are almost surely distinct, then

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α +

1

#Cal + 1
.

Proof: application of the quantile lemma.

7 Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α

7Only the calibration and test data need to be exchangeable.
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SCP: what choices for the regression scores?

Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}
Standard SCP Locally weighted SCP CQR

Vovk et al. (2005) Lei et al. (2018) Romano et al. (2019)

s (Â(X ),Y ) |µ̂(X )− Y | |µ̂(X )− Y |
ρ̂(X )

max(Q̂Rlower(X )− Y ,

Y − Q̂Rupper(X ))

Ĉα(x) [µ̂(x)± q1−α (S)] [µ̂(x)± q1−α (S)ρ̂(x)]
[Q̂Rlower(x)− q1−α (S);

Q̂Rupper(x) + q1−α (S)]
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SCP: standard classification

• Y ∈ {1, . . . ,C} (C classes)

• Â(X ) = (p̂1(X ), . . . , p̂C (X )) (estimated probabilities)

• s (Â(X ),Y ) := 1− (Â(X ))Y

• For a new point Xn+1, return

Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}
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SCP: standard classification in practice

Ex: Yi ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set

Cali “dog” “dog” “dog” “tiger” “tiger” “tiger” “tiger” “cat” “cat” “cat”

p̂dog(Xi )

p̂tiger(Xi )

p̂cat(Xi )

0.95

0.02

0.03

0.90

0.05

0.05

0.85

0.10

0.05

0.15

0.60

0.25

0.15

0.55

0.30

0.20

0.50

0.30

0.15

0.45

0.40

0.15

0.40

0.45

0.25

0.35

0.40

0.20

0.45

0.35

Si 0.05 0.1 0.15 0.40 0.45 0.50 0.55 0.55 0.6 0.65

• q1−α(S) = 0.65

• Â(Xn+1) = (0.05, 0.60, 0.35)

↪→ s (Â(Xn+1),“dog”) = 0.95 “dog” /∈ Ĉα(Xn+1)

↪→ s (Â(Xn+1),“tiger”) = 0.40 ≤ q1−α(S) “tiger” ∈ Ĉα(Xn+1)

↪→ s (Â(Xn+1),“cat”) = 0.65 ≤ q1−α(S) “cat” ∈ Ĉα(Xn+1)

• Ĉα(Xn+1) = {“tiger”, “cat”}
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SCP: standard classification in practice, cont’d

Ex: Y ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set
Cali “dog” “dog” “dog” “tiger” “tiger” “tiger” “tiger” “cat” “cat” “cat”

p̂dog(Xi )

p̂tiger(Xi )

p̂cat(Xi )

0.95

0.02

0.03

0.90

0.05

0.05

0.85

0.10

0.05

0.05

0.85

0.10

0.05

0.80

0.15

0.05

0.75

0.20

0.05

0.70

0.25

0.10

0.25

0.65

0.10

0.30

0.60

0.15

0.30

0.55

Si 0.05 0.1 0.15 0.15 0.20 0.25 0.30 0.35 0.40 0.45

• q1−α(S) = 0.45

• Â(Xn+1) = (0.05, 0.60, 0.35)

↪→ s (Â(Xn+1), “dog”) = 0.95 “dog” /∈ Ĉα(Xn+1)

↪→ s (Â(Xn+1), “tiger”) = 0.40 ≤ q1−α(S) “tiger” ∈ Ĉα(Xn+1)

↪→ s (Â(Xn+1), “cat”) = 0.65 “cat” /∈ Ĉα(Xn+1)

• Ĉα(Xn+1) = {“tiger”}
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SCP: limits of the standard classification case

The standard classification conformity score function leads to:

3 smallest prediction sets on average

7 undercovering (overcovering) hard (easy) subgroups

(similar to the standard mean regression case!)

⇒ Other score functions can be built to improve adaptiveness

(as in regression with localized scores)
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SCP: classification with Adaptive Prediction Sets8

1. Sort in decreasing order p̂σ(1)(X ) ≥ . . . ≥ p̂σ(C)(X )

2. s (Â(X ),Y ) :=

σ−1(Y )∑
k=1

p̂σ(k)(X ) (sum of the estimated probabilities

associated to classes at least as large as that of the true class Y )

3. Return the set of classes {σn+1(1), . . . , σn+1(r?)}, where

r? = argmax
1≤r≤C

{
r∑

k=1

p̂σn+1(k)(Xn+1) < q1−α(S)

}
+ 1
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Romano et al. (2020b), Classification with Valid and Adaptive Coverage, NeurIPS

Figure highly inspired by Angelopoulos and Bates (2023). 35 / 55



SCP: classification with Adaptive Prediction Sets in practice

Ex: Y ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set
Cali “dog” “dog” “dog” “tiger” “tiger” “tiger” “tiger” “cat” “cat” “cat”

p̂dog(Xi )

p̂tiger(Xi )

p̂cat(Xi )

0.95

0.02

0.03

0.90

0.05

0.05

0.85

0.10

0.05

0.05

0.85

0.10

0.05

0.80

0.15

0.05

0.75

0.20

0.10

0.75

0.15

0.25

0.40

0.35

0.10

0.30

0.60

0.15

0.30

0.55

Si 0.95 0.90 0.85 0.85 0.80 0.75 0.75 0.75 0.60 0.55

• q1−α(S) = 0.95

↪→ Ex 1: Â(Xn+1) = (0.05, 0.45, 0.5), r? = 2

Ĉα(Xn+1) = {“tiger”, “cat”}
↪→ Ex 2: Â(Xn+1) = (0.03, 0.95, 0.02), r? = 1

Ĉα(Xn+1) = {“tiger”}
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Split Conformal Prediction: summary

• Simple procedure which quantifies the uncertainty of any predictive model Â

by returning predictive regions

• Finite-sample guarantees

• Distribution-free as long as the data are exchangeable (and so are the scores)

• Marginal theoretical guarantee over the joint (X ,Y ) distribution, and not con-

ditional, i.e., no guarantee that for any x :

P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α.

↪→ marginal also over the whole calibration set and the test point!

37 / 55



Challenges: open questions (non exhaustive!)

• Conditional coverage (∼ Previous Section)

• Computational cost vs statistical power (Next Section)

• Exchangeability (Last Section)
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Splitting the data might not be desired

SCP suffers from data splitting:

• lower statistical efficiency (lower model accuracy and higher predictive set size)

• higher statistical variability

Can we avoid splitting the data set?
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The naive idea does not enjoy valid coverage (even empirically)

• A naive idea:

◦ Get Â by training the algorithm A on {(X1,Y1), . . . , (Xn,Yn)}.
◦ compute the empirical quantile q1−α(S) of the set of scores

S =
{

s
(
Â (Xi ) ,Yi

)}n

i=1
∪ {∞}.

◦ output the set
{
y such that s

(
Â (Xn+1) , y

)
≤ q1−α(S)

}
.

7 Â has been obtained using the training set {(X1,Y1), . . . , (Xn,Yn)} but did

not use Xn+1.

⇒ s
(
Â (Xn+1) , y

)
stochastically dominates any element of{

s
(
Â (Xi ) ,Yi

)}n

i=1
.
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Full Conformal Prediction9 does not discard training points!

• Full (or transductive) Conformal Prediction

◦ avoids data splitting

◦ at the cost of many more model fits

• Idea: the most probable labels Yn+1 live in Y, and have a low enough conformity

score. By looping over all possible y ∈ Y, the ones leading to the smallest

conformity scores will be found.

9
Vovk et al. (2005), Algorithmic Learning in a Random World
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Full Conformal Prediction (CP): recovering exchangeability

For any candidate (Xn+1, y):

1. Get Ây by training A on {(X1,Y1), . . . , (Xn,Yn)} ∪ {(Xn+1, y)}
2. Obtain a set of training scores

S(train)
y =

{
s (Ây (Xi ),Yi )

}n

i=1
∪ { s (Ây (Xn+1), y)}

and compute their 1− α empirical quantile q1−α

(
S(train)
y

)
Output the set

{
y such that s

(
Ây (Xn+1) , y

)
≤ q1−α

(
S(train)
y

)}
.

3 Test point treated in the same way than train points

7 Computationally costly
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Full CP: theoretical foundation

Definition (Symmetrical algorithm)

A deterministic algorithm A : (U1, . . . ,Un) 7→ Â is symmetric if for any

permutation σ of J1, nK:

A (U1, . . . ,Un)
a.s.
= A

(
Uσ(1), . . . ,Uσ(n)

)
.
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Full CP: theoretical guarantees

Full CP enjoys finite sample guarantees proved in Vovk et al. (2005).

Theorem

Suppose that

(i) (Xi ,Yi )
n+1
i=1 are exchangeable,

(ii) the algorithm A is symmetric.

Full CP applied on (Xi ,Yi )
n
i=1 ∪ {Xn+1} outputs Ĉα (·) such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

Additionally, if the scores are a.s. distinct:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α +

1

n + 1
.

7 Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α
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Interpolation regime

FCP sets with an interpolating algorithm

Assume A interpolates:

• Â = A ((x1, y1), . . . , (xn+1, yn+1))

• Â(xk)− yk = 0 for any k ∈ J1, n + 1K

⇒ Full Conformal Prediction (with standard score functions) outputs Y (the

whole label space) for any new test point!
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Jackknife: the naive idea does not enjoy valid coverage

• Based on leave-one-out (LOO) residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data

• Get Â−i by training A on Dn \ (Xi ,Yi )

• LOO scores S =
{
|Â−i (Xi )− Yi |

}
i
∪ {+∞} (in standard mean regression)

• Get Â by training A on Dn

• Build the predictive interval:
[
Â(Xn+1)± q1−α(S)

]
Warning

No guarantee on the prediction of Â with scores based on (Â−i )i , without

assuming a form of stability on A.
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Jackknife+10

• Based on leave-one-out (LOO) residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data

• Get Â−i by training A on Dn \ (Xi ,Yi )

• LOO predictions / predictive intervals

Sup/down =
{
Â−i (Xn+1)± |Â−i (Xi )− Yi |

}
i
∪ {±∞}

(in standard mean regression)

• Build the predictive interval: [qα,inf(Sdown); q1−α(Sup)]

Theorem

If Dn ∪ (Xn+1,Yn+1) are exchangeable and A is symmetric: P(Yn+1 ∈ Ĉα(Xn+1)) ≥ 1− 2α.

10
Barber et al. (2021b), Predictive Inference with the jackknife+, The Annals of Statistics

Recall qβ,inf(X1, . . . ,Xn) := bβ × nc smallest value of (X1, . . . ,Xn)
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CV+ 11 (see also cross-conformal predictors: Vovk, 2015)

• Based on cross-validation residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data

• Split Dn into K folds F1, . . . ,FK

• Get Â−Fk
by training A on Dn \ Fk

• Cross-val predictions / predictive intervals

Sup/down =

{{
Â−Fk

(Xn+1)± |Â−Fk
(Xi )− Yi |

}
i∈Fk

}
k

∪ {±∞}
(in standard mean regression)

• Build the predictive interval: [qα,inf(Sdown); q1−α(Sup)]

Theorem

If Dn ∪ (Xn+1,Yn+1) are exchangeable and A is symmetric:

P(Yn+1 ∈ Ĉα(Xn+1)) ≥ 1− 2α−min

(
2(1− 1/K )

n/K + 1
,

1− K/n

K + 1

)
≥ 1− 2α−

√
2/n.

11
Barber et al. (2021b), Predictive Inference with the jackknife+, The Annals of Statistics

Recall qβ,inf(X1, . . . ,Xn) := bβ × nc smallest value of (X1, . . . ,Xn) 48 / 55



General overview

SCP CV+ FCPJackknife+

Computational efficiency

Statistical efficiency

Nested Conformal Prediction

• Generalized framework encapsulating out-of-sample methods: Nested CP

(Gupta et al., 2022)

• Accelerating FCP: Nouretdinov et al. (2001); Lei (2019); Ndiaye and Takeuchi

(2019); Cherubin et al. (2021); Ndiaye and Takeuchi (2022); Ndiaye (2022)

Non exhaustive references.
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Exchangeability does not hold in many practical applications

• CP requires exchangeable data points to ensure validity

7 Covariate shift, i.e. LX changes but LY |X stays constant

7 Label shift, i.e. LY changes but LX |Y stays constant

7 Arbitrary distribution shift

7 Possibly many shifts, not only one

50 / 55



Covariate shift (Tibshirani et al., 2019)12

• Setting:

◦ (X1,Y1), . . . , (Xn,Yn)
i.i.d.∼ PX × PY |X

◦ (Xn+1,Yn+1) ∼ P̃X × PY |X

• Idea: give more importance to calibration points that are closer in distribution

to the test point

• In practice:

1. estimate the likelihood ratio w(Xi ) =
dP̃X (Xi )

dPX (Xi )

2. normalize the weights, i.e. ωi = ω(Xi ) =
w(Xi )∑n+1
j=1 w(Xj)

3. outputs Ĉα(Xn+1) ={
y : s (Â(Xn+1), y) ≤ q1−α ({ωiSi}i∈Cal ∪ {+∞})

}
12

Tibshirani et al. (2019), Conformal Prediction Under Covariate Shift, NeurIPS
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Label shift (Podkopaev and Ramdas, 2021)13

• Setting:
◦ (X1,Y1), . . . , (Xn,Yn)

i.i.d.∼ PX |Y × PY

◦ (Xn+1,Yn+1) ∼ PX |Y × P̃Y

◦ Classification

• Idea: give more importance to calibration points that are closer in distribution

to the test point

• Trouble: the actual test labels are unknown
• In practice:

1. estimate the likelihood ratio w(Yi ) =
dP̃Y (Yi )

dPY (Yi )
using algorithms from the existing

label shift literature

2. normalize the weights, i.e. ωy
i = ωy (Xi ) =

w(Yi )∑n
j=1 w(Yj) + w(y)

3. outputs Ĉα(Xn+1) ={
y : s (Â(Xn+1), y) ≤ q1−α ({ωy

i Si}i∈Cal ∪ {+∞})
}

13
Podkopaev and Ramdas (2021), Distribution-free uncertainty quantification for classification under label

shift, UAI 52 / 55



Generalizations

• Arbitrary distribution shift: Cauchois et al. (2020) leverages ideas from the

distributionally robust optimization literature

• Two major general theoretical results beyond exchangeability:

◦ Chernozhukov et al. (2018)

↪→ If the learnt model is accurate and the data noise is strongly mixing, then CP

is valid asymptotically 3

◦ Barber et al. (2022)

↪→ Quantifies the coverage loss depending on the strength of exchangeability

violation

P(Yn+1 ∈ Ĉα(Xn+1)) ≥ 1− α− average violation of exchangeability
by each calibration point

↪→ proposed algorithm: reweighting again!

e.g., in a temporal setting, give higher weights to more recent points.
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Online setting

• Data: T0 random variables (X1,Y1), . . . , (XT0 ,YT0) in Rd ×R
• Aim: predict the response values as well as predictive intervals for T1 subsequent

observations XT0+1, . . . ,XT0+T1 sequentially: at any prediction step t ∈ JT0 +

1,T0 + T1K, Yt−T0 , . . . ,Yt−1 have been revealed

• Build the smallest interval Ĉ t
α such that:

P
{
Yt ∈ Ĉ t

α (Xt)
}
≥ 1− α, for t ∈ JT0 + 1,T0 + T1K,

often simplified in:

1

T1

T0+T1∑
t=T0+1

1
{
Yt ∈ Ĉ t

α (Xt)
}
≈ 1− α.
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Recent developments

• Consider splitting strategies that respect the temporal structure
• Gibbs and Candès (2021) propose a method which reacts faster to temporal

evolution
◦ Idea: track the previous coverages of the predictive intervals (1{Yt ∈ Ĉα(Xt)})
◦ Tool: update the empirical quantile level with a learning rate γ

◦ Asymptotic guarantee (on average) for any distribution (even adversarial)

• Zaffran et al. (2022) studies the influence of this learning rate γ and proposes,

along with Gibbs and Candès (2022), a method not requiring to choose γ

• Bhatnagar et al. (2023) enjoys anytime regret bound, by leveraging tools from

the strongly adaptive regret minimization literature

• Bastani et al. (2022) proposes an algorithm achieving stronger coverage guar-

antees (conditional on specified overlapping subsets, and threshold calibrated)

without hold-out set

• Angelopoulos et al. (2023) combines CP ideas with control theory ones, to

adaptively improve the predictive intervals depending on the errors structure

Non exhaustive references. 55 / 55



References i

Angelopoulos, A. N. and Bates, S. (2023). Conformal prediction: A gentle

introduction. Foundations and Trends® in Machine Learning, 16(4).

Angelopoulos, A. N., Candès, E. J., and Tibshirani, R. J. (2023). Conformal pid

control for time series prediction. arXiv: 2307.16895.

Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021a). The limits

of distribution-free conditional predictive inference. Information and Inference: A

Journal of the IMA, 10(2).

Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021b). Predictive

inference with the jackknife+. The Annals of Statistics, 49(1).

Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2022). Conformal

prediction beyond exchangeability. To appear in Annals of Statistics (2023).



References ii

Bastani, O., Gupta, V., Jung, C., Noarov, G., Ramalingam, R., and Roth, A.

(2022). Practical adversarial multivalid conformal prediction. In Advances in

Neural Information Processing Systems. Curran Associates, Inc.

Bhatnagar, A., Wang, H., Xiong, C., and Bai, Y. (2023). Improved online

conformal prediction via strongly adaptive online learning. In Proceedings of the

40th International Conference on Machine Learning. PMLR.

Cauchois, M., Gupta, S., Ali, A., and Duchi, J. C. (2020). Robust Validation:

Confident Predictions Even When Distributions Shift. arXiv: 2008.04267.
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